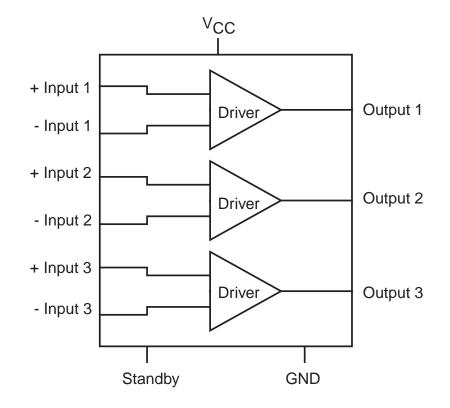


FEATURES

- Triple Video Line Driver Chip
- R_L=150 Ω (75 Ω Back-Terminated Cable)
- Power-Down Standby Mode
- Very Small 5.0 x 4.4 mm Package
- Low Power Dissipation: 95 mW
- Flat Response f_{IN} = 100 kHz to 10 MHz (typical)
- Crosstalk -40 dB (Typical)
- Single +5 Volt Power Supply

APPLICATIONS


- RGB Video Line Driver Applications
- Video Line Driver for RGB Encoders
- Digital Video Tape Recorders
- Video Cassette Recorders
- PC Multimedia
- Consumer Video

GENERAL DESCRIPTION

The SPT9402 is a triple video line driver chip that takes standard video signals as analog inputs and provides buffered analog outputs for driving 150 Ω loads (75 Ω back-terminated cables). The standard video input signals (1 V_{P-P}) are typically amplified 6 dB using external components to produce a 2 V_{P-P} into an AC-coupled 150 Ω load. (See the typical interface circuit diagram.)

The SPT9402 features a standby mode which draws only 113 μ W of power. Nominal power dissipation (no input) is typically 95 mW. It requires a single +5 V supply, operates over the commercial temperature range (0 to +70 °C) and is available in a very small (5.0 x 4.4 mm) 12-lead Shrink Small Outline Package (SSOP).

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur)⁽¹⁾ 25 °C

Supply Voltages	
Vcc	+6.0 V
Maximum Power Dissipation	
P _D	
Thermal Impedance (T _A =+25 °C	and above)
ΘCA	

Temperature

Operating Temperature	0 to +70 °C
Storage Temperature	

Note: 1. Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

ELECTRICAL SPECIFICATIONS

 T_{A} = +25 °C, V_{CC} = +5.0 V, V_{IN} = 1.0 V_{P-P} video signal, voltage gain of +2, R_{L} = 150 Ω , unless otherwise specified.

PARAMETERS	TEST CONDITIONS	TEST LEVEL	MIN	SPT9402 TYP	МАХ	UNITS
Power Supply						
Supply Current (I _{CC})	No Input	I		19	27	mA
V _{CC} Voltage		IV	4.5	5.0	5.5	V
Power Dissipation		I		95	135	mW
Standby Current	Pin 2 Grounded	1		22.5	50	μA
Standby Power Dissipation	Pin 2 Grounded	I		113	250	μW
Digital Input						
Digital Input (Low)	Standby Pin 2	1	0.0	0.1	0.3	V
Digital Input (High)	Standby Pin 2	I	1.8	2.0	Vcc	V
Dynamic Performance						
Voltage Gain	f _{IN} = 1 MHz	1	5.7	6.0	6.3	dB
Total Harmonic Distortion	f _{IN} = 1 kHz	I		0.2	1.0	%
Open Loop Gain		V		40		dB
Bandwidth		V		20		MHz
Slew Rate		V		70		V/µs
Frequency Response	$f_{IN} = 1$ to 5 MHz	V		-0.9		dB
Cross Talk	f _{IN} = 1 MHz	V		-40		dB

TEST LEVEL CODES

TEST LEVEL

Ш

Ш

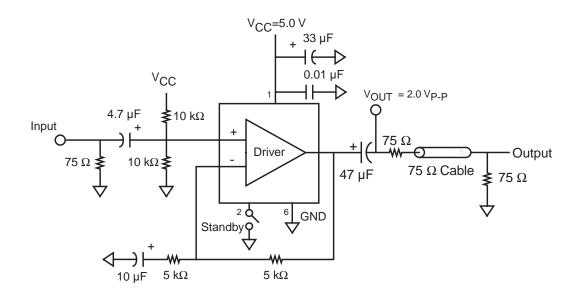
IV

V

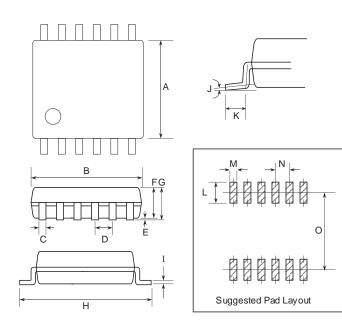
VI

TEST PROCEDURE

at the specified temperatures.

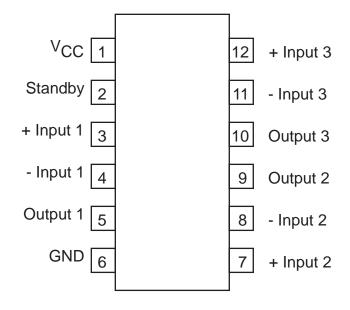

100% production tested at the specified temperature.

100% production tested at $T_A = +25 \text{ °C}$, and sample tested


All electrical characteristics are subject to the following conditions:

All parameters having min/max specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank section in the data column indicates that the specification is not tested at the specified condition.

- QA sample tested only at the specified temperatures.
- Parameter is guaranteed (but not tested) by design and characterization data.
- Parameter is a typical value for information purposes only.
- 100% production tested at $T_A = +25$ °C. Parameter is guaranteed over specified temperature range.



PACKAGE OUTLINE 12-Lead SSOP

	INCHES MILLIME		INCHES		TERS
SYMBOL	MIN	MAX	MIN	MAX	
А	0.165	0.181	4.2	4.6	
В	0.189	0.205	4.8	5.2	
С	0.012 typ		0.3 typ		
D	0.031 typ		0.8 typ		
Е	0.000	0.008	0.0	0.2	
F	0.047	0.063	1.2	1.6	
G		0.067 max		1.7 max	
н	0.264	0.248	6.7	6.3	
I	0.004	0.010	0.10	0.25	
J	0-10°		0-10°		
К	0.012	0.028	0.3	0.7	
L	0.047 typ		1.2 typ		
М	0.016 typ		0.4 typ		
Ν	0.031 typ		0.8 typ		
0	0.213 typ		5.4 typ		

PIN ASSIGNMENTS

PIN FUNCTIONS

Name	Function
Input ₁	Channel 1 Signal Input
	(typically 1 V _{P-P} , AC coupled)
Input ₂	Channel 2 Signal Input
	(typically 1 V _{P-P} , AC coupled)
Input ₃	Channel 3 Signal Input
	(typically 1 V _{P-P} , AC coupled)
Output ₁	Channel 1 Output
	(typically 2.0 V _{P-P} , $R_L = 150 \Omega$, AC coupled)
Output ₂	Channel 2 Output
	(typically 2.0 V _{P-P} , $R_L = 150 \Omega$, AC coupled)
Output ₃	Channel 3 Output
	(typically 2.0 V_{P-P} , $R_L = 150 \Omega$, AC coupled)
Standby	Power Down Standby Mode Select
	(Low = Standby, Internal Pull-Up)
V _{CC}	+5.0 V Supply
GND	Ground

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE TYPE	
SPT9402SCR	0 to +70 °C	12-Lead SSOP	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

© Copyright 2002 Fairchild Semiconductor Corporation

www.fairchildsemi.com