

SPT7864

10-BIT, 40 MSPS A/D CONVERTER

TECHNICAL DATA

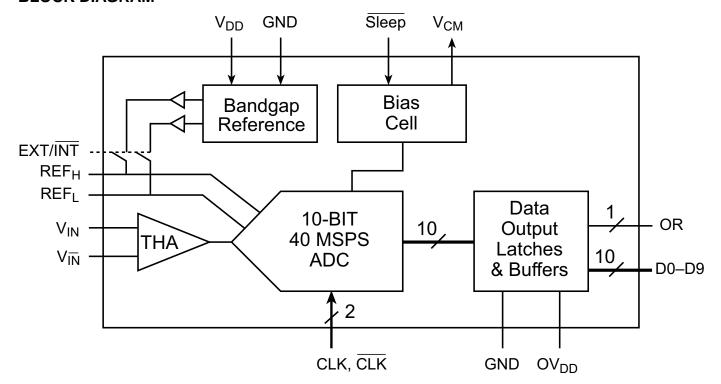
NOVEMBER 20, 2001

FEATURES

- 40 MSPS maximum sample rate
- 9.5 effective number of bits at f_{IN} = 10 MHz and f_{S} = 40 MSPS
- 2 V_{P-P} full-scale input range
- Differential input 2.5 V common mode
- Internal or external voltage reference
- Common-mode voltage reference output
- +3 V / +5 V digital output logic compatibility
- +5 V analog power supply
- · Sleep mode power dissipation: 55 mW

APPLICATIONS

- Video imaging
- · Medical imaging
- Radar receivers
- IR imaging
- · Digital communications


GENERAL DESCRIPTION

The SPT7864 is a 10-bit, 40 MSPS analog-to-digital converter with low power dissipation at only 395 mW typical at 40 MSPS with a power supply of +5.0 V. The digital outputs are +3 V or +5 V, and are user selectable. The SPT7864 has incorporated proprietary circuit design and CMOS

processing technologies to achieve its advanced performance. Inputs and outputs are TTL/CMOS compatible to interface with TTL/CMOS logic systems. Output data format is offset binary.

The SPT7864 is available in a 28-lead SSOP package over the commercial temperature range.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur) 25 °C

Supply Voltages		Output	
V _{DD}	6.0 V	Digital Outputs	–0.3 V to V _{DD} +0.7 V
OV _{DD}	6.0 V		
3 · BB		Temperature	
Input Voltages		Operating Temperature	0 to +70 °C
Analog Input	0.3 V to V _{DD} +0.7 V	Storage Temperature	–65 to +150 °C
CLK Input	0.3 V to V _{DD} +0.7 V		

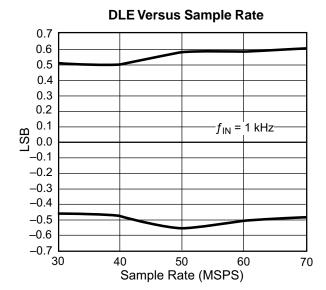
Note: Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

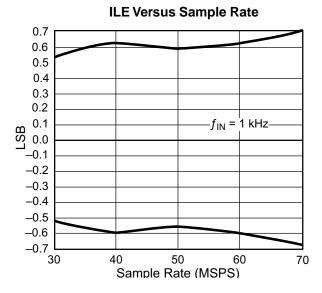
ELECTRICAL SPECIFICATIONS

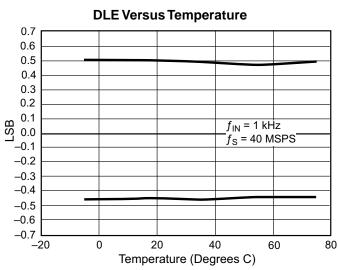
 $\mathsf{T_{A}=T_{MIN}}\ \mathsf{to}\ \mathsf{T_{MAX}}, \mathsf{V_{DD}=+5.0}\ \mathsf{V}, \ \mathit{f_{S}=40}\ \mathsf{MSPS}, \mathsf{V_{REFH}=3.0}\ \mathsf{V}, \mathsf{V_{REFL}=2.0}\ \mathsf{V}, \mathsf{OV_{DD}=3.0}\ \mathsf{V}, \mathsf{unless}\ \mathsf{otherwise}\ \mathsf{specified}.$

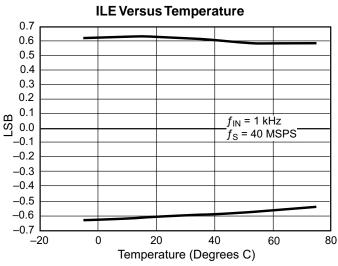
PARAMETERS	TEST CONDITIONS	TEST LEVEL	MIN	SPT7864 TYP	MAX	UNITS
Resolution			10			Bits
DC Accuracy Differential Linearity Error (DLE) Integral Linearity Error (ILE) No Missing Codes	@ +25 °C full temperature @ +25 °C full temperature	V V V VI		±0.5 ±0.75 ±0.6 ±1.0 Guaranteed		LSB LSB LSB LSB
Analog Input Input Voltage Range (Differential) Input Common Mode (V _{CM}) Input Capacitance Input Bandwidth Common Mode Rejection Ratio (CMRR)		V IV V V	2 98	±1 2.5 2 50	3	V V pF MHz dB
Timing Characteristics Conversion Rate Pipeline Delay (Latency) Output Delay (t _D) Aperture Delay Time (t _{AP}) Aperture Jitter Time		VI IV V V		6 7.5 1.5 15	40	MSPS clocks ns ns ps (rms)
Dynamic Performance Effective Number of Bits (ENOB) $f_{IN} = 10 \text{ MHz}, f_{CLK} = 40 \text{ MSPS}$ Signal-to-Noise Ratio (SNR) $f_{IN} = 10 \text{ MHz}, f_{CLK} = 40 \text{ MSPS}$ Total Harmonic Distortion (THD) $f_{IN} = 10 \text{ MHz}, f_{CLK} = 40 \text{ MSPS}$ Signal-to-Noise and Distortion (SINAD) $f_{IN} = 10 \text{ MHz}, f_{CLK} = 40 \text{ MSPS}$ Spurious Free Dynamic Range (SFDR)	25 °C 0 °C to +70 °C 25 °C 0 °C to +70 °C 25 °C 0 °C to +70 °C 25 °C 0 °C to +70 °C	I IV IV I IV	9.3 9.3 58 57 57	9.5 9.5 59 59 -71 -71 59	-66 -65	Bits Bits dB dB dB dB dB
f_{IN} = 10 MHz, f_{CLK} = 40 MSPS	25 °C 0 °C to +70 °C	l IV	70 68	73 71		dB dB

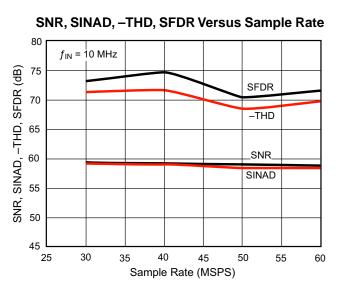
ELECTRICAL SPECIFICATIONS

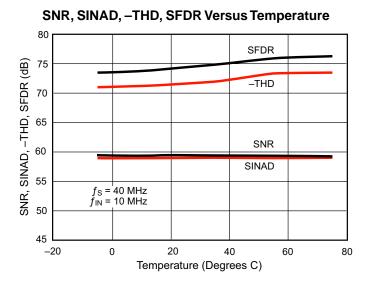

 $\mathsf{T_{A}=T_{MIN}}\ \mathsf{to}\ \mathsf{T_{MAX}},\ \mathsf{V_{DD}=+5.0}\ \mathsf{V},\ f_{S}\!\!=\!\!40\ \mathsf{MSPS},\ \mathsf{V_{REFH}}\!\!=\!\!3.0\ \mathsf{V},\ \mathsf{V_{REFL}}\!\!=\!\!2.0\ \mathsf{V},\ \mathsf{OV_{DD}}\!\!=\!\!3.0\ \mathsf{V},\ \mathsf{unless}\ \mathsf{otherwise}\ \mathsf{specified}.$

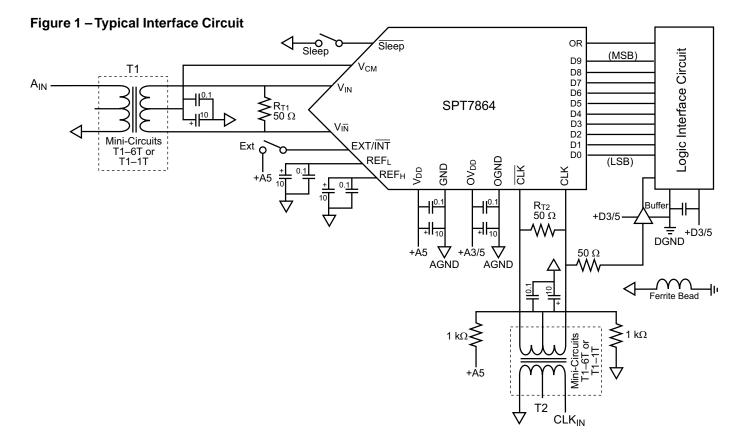

PARAMETERS	TEST CONDITIONS	TEST LEVEL	MIN	SPT7864 TYP	MAX	UNITS
Power Supply Requirements V _{DD} Voltage (Analog Supply) OV _{DD} Voltage (Output Supply) V _{DD} Current OV _{DD} Current		IV IV VI	4.75 2.7	5.0 3.0/5.0 74 8	5.25 5.25	V V mA mA
Power Dissipation External Voltage Reference Internal Voltage Reference Sleep Mode Power Dissipation External Voltage Reference		VI VI		387 395 45	417 425 47	mW mW
Internal Voltage Reference Power Supply Rejection Ratio (PSRR)		VI V		55 45	56	mW dB
Internal References Common Mode Voltage Reference (V _{CM}) Common Mode Voltage Tempco Output Impedance (V _{CM})	IO = -1 μA	VI V V	2.4	2.5 100 2	2.6	V ppm/°C kΩ
Reference Low Output Voltage (V _{REFL}) Reference High Output Voltage (V _{REFH})	$ \begin{aligned} (EXT/\overline{INT}) &= 0 \\ (EXT/\overline{INT}) &= 0 \end{aligned} $	VI VI	1.95 2.95	2.0 3.0	2.05 3.05	V V
External References Reference Low Input Voltage Range Reference High Input Voltage Range	$(EXT/\overline{INT}) = 1$ $(EXT/\overline{INT}) = 1$	IV IV	1.7 2.7	2.0 3.0	2.3 3.3	V
Digital Outputs Output Voltage High Output Voltage Low	IO = -2 mA IO = 2 mA	VI VI	85% OV _{DD}	90% OV _{DD} 0.2	OV _{DD} 0.4	V
Digital Inputs Input High Voltage Input Low Voltage Input High Current Input Low Current		VI VI VI	80% V _{DD}		20% V _{DD} ±100 ±100	V V µA µA
Clock Inputs Clock Inputs High Voltage Clock Inputs Low Voltage Clock Inputs High Current Clock Inputs Low Current		VI VI VI VI	2		5 0.4 ±115 ±115	V V μΑ μΑ


TEST LEVEL CODES TEST LEVEL TEST PROCEDURE


ILOI LLVLL GODLO	ILOI LLVLL	TEGIT NOGEDONE
All electrical characteristics are subject to the	1	100% production tested at the specified temperature.
following conditions: All parameters having min/max specifications are	II	100% production tested at T_A = +25 °C, and sample tested at the specified temperatures.
guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality Assurance inspection. Any blank section in the data column indicates that the	III	QA sample tested only at the specified temperatures.
		Parameter is guaranteed (but not tested) by design and characterization data.
specification is not tested at the specified	V	Parameter is a typical value for information purposes only.
condition.	VI	100% production tested at T_A = +25 °C. Parameter is guaranteed over specified temperature range.


TYPICAL PERFORMANCE CHARACTERISTICS



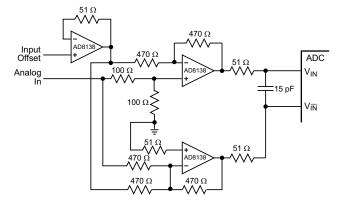


TYPICAL INTERFACE CIRCUIT

REFERENCES

The SPT7864 has a differential analog input. The input range is determined by the voltages V_{IN} and $V_{I\overline{N}}$ applied to reference pins REF_H and REF_L respectively, and is equal to $\pm(V_{IN}-V_{I\overline{N}})$. Externally generated reference voltages connected to REF_H and REF_L should be symmetric around 2.5 V. The input range can be defined between ± 0.6 V and ± 1.5 V. An internal reference exists, providing reference voltages at pins REF_H and REF_L equal to ± 3.0 V (V_{REFH}) and ± 2.0 V (V_{REFL}). These can be connected to REF_H and REF_L by connecting pin EXT/iNT to GND. The references should be bypassed as close to the converter pins as possible using 100 nF capacitors in parallel with smaller capacitors (e.g. 220 pF) to ground.

ANALOG INPUT


The input of the SPT7864 can be configured in various ways, dependent upon whether a single-ended or differential, AC- or DC-coupled input is wanted.

AC-coupled input is most conveniently implemented using a transformer with a center-tapped secondary winding. The center tap is connected to the V_{CM} node, as shown in figure 1. In order to obtain low distortion, it is important that the selected transformer does not exhibit core saturation at full scale. Excellent results are obtained with the Mini-

Circuits T1-6T or T1-1T. Proper termination of the input is important for input signal purity. A small capacitor (typically 68 pF) across the inputs attenuates kickback noise from the sample-and-hold. A small capacitor (1 nF) between V_{CM} and ground has also been proven to be advantageous.

If a DC-coupled, single-ended input is wanted, a solution based on operational amplifiers, as shown in figure 2, is usually preferred. The AD8138 is suggested for low distortion and video bandwidth. Lower cost operational amplifiers may be used if the demands are less strict.

Figure 2 – DC-Coupled, Single-Ended to Differential Conversion (power supplies and bypassing not shown)

DIFFERENTIAL CLOCK INPUT

The SPT7864 clock can be driven differentially or single-ended. When driven differentially, $\overline{\text{CLK}}$ and CLK accommodate differential sinusodial signals centered around $V_{DD}/2$. The peak-to-peak value should be 0.8 V. In order to preserve accuracy at high input frequency, it is important that the clock have low jitter. The differential clock input is made to allow a low-jitter clock design. To ensure low jitter, the differential input should be a pure sine wave with low white noise floor.

SINGLE-ENDED CLOCK INPUT

For single-ended operation, the CLK node is internally biased to 1.5 V, and should externally be decoupled to ground by a capacitor. A CMOS logic level clock (5 V or 3 V) is applied at the CLK node. (To get an inverted clock input, CLK should be decoupled and the clock signal applied at the CLK node). The duty cycle of the clock should be close to 50%. Consecutive pipeline stages in the ADC are clocked in antiphase. With a 50% duty cycle, every stage has the same time for settling. If the duty cycle devi-

Figure 3 – Driving Differential Inputs with a Differential Configuration

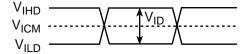
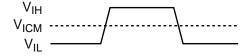
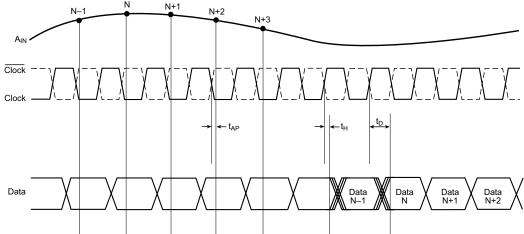



Figure 4 – Driving Differential Inputs with a Single-Ended Configuration

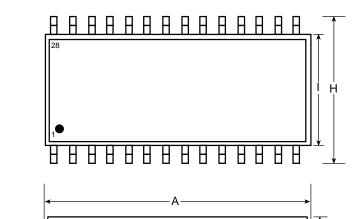
ates from 50%, every second stage has a shorter time for settling; thus it operates less accurately, causing degradation of SNR.

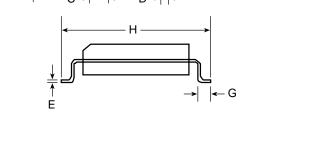
In order to preserve accuracy at high input frequency, it is important that the clock have low jitter and steep edges. Rise/fall times should be kept shorter than 2 ns whenever possible. Overshoot should be minimized. Low jitter is especially important when converting high-frequency input signals. Jitter causes the noise floor to rise proportionally to input signal frequency. Jitter may be caused by crosstalk on the PCB. It is therefore recommended that the clock trace on the PCB be made as short as possible.


DIGITAL OUTPUTS

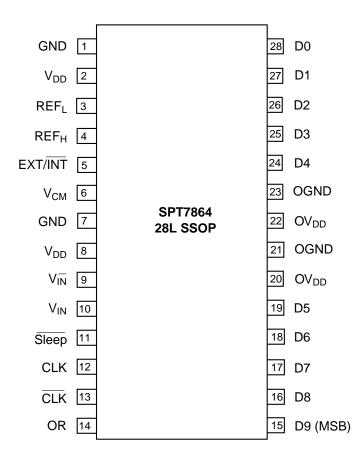
The digital output data appears in offset binary code at CMOS logic levels. Full-scale negative input results in output code 000...0. Full-scale positive input results in output code 111...1. Output data are available 6 clock cycles after the data are sampled. The analog input is sampled one aperture delay (t_{AP}) after the high-to-low clock transition. Output data should be sampled as shown in the timing diagram (figure 5). The OR pin is an out-of-range pin; if the outputs go either over or under range, OR is set high.

PCB LAYOUT AND DECOUPLING


A well designed PCB is necessary to get good spectral purity from any high-performance ADC. A multilayer PCB with a solid ground plane is recommended for optimum performance. If the system has a split analog and digital ground plane, it is recommended that all ground pins on the ADC be connected to the analog ground plane. It is our experience that this gives the best performance. The power supply pins should be bypassed using 100 nF surface mounted capacitors as close to the package pins as possible. Analog and digital supply pins should be separately filtered.



PACKAGE OUTLINE


28-Lead SSOP

	INCHES		MILLI	METERS
SYMBOL	MIN	MAX	MIN	MAX
А	0.390	0.413	9.90	10.50
В	0.002	0.008	0.05	0.20
С	0.026 typ		0.65	BSC
D	0.009	0.015	0.22	0.38
E	0.004	0.010	0.09	0.25
F	0.065	0.073	1.65	1.85
G	0.022	0.037	0.55	0.95
Н	0.291	0.323	7.40	8.20
ı	0.197	0.220	5.00	5.60

PIN ASSIGNMENTS

PIN FUNCTIONS

Name I	Function
GND	Analog ground
V_{DD}	Analog +5 V
OGND	Output ground
OV_{DD}	Supply voltage for digital outputs 3 V/5 V
REFL	Reference pin low, input for external reference, bypass with capacitor (10 µF) when internal reference is selected.
REFH	Reference pin high, input for external reference, bypass with capacitor (10 μF) when internal voltage is selected.
V_{CM}	2.5 V common mode voltage reference output
V_{IN}	Non-inverted analog input
V_{IN}	Inverted analog input
CLK	Clock input pin
CLK	Complement of clock input pin, internally biased to 1.5 V; if single-ended clock is used, bypass to GND with 10 µF
D0-D9	Digital outputs; D0 = LSB; 3 V/5 V compatible
OR	Out-of-range bit; 3 V/5 V compatible
EXT/INT	EXT/INT = 1, external reference used; internal reference powered down
	EXT/INT = 0, internal reference used; internally pulled down
Sleep	Sleep = 1, normal operation; internally pulled up Sleep = 0, powered-down mode

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGETYPE	
SPT7864SCR	0 to +70 °C	28L SSOP	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

© Copyright 2002 Fairchild Semiconductor Corporation